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The most unbiased probabilistic model for the possible values of a characteristic 
of a quantum system subject to the constraints represented by some known mean 
values characterizes the system in a steady-state condition. We suppose that 
random fluctuations alter such a steady-state condition. The probability distribu- 
tion of the possible deviations from the steady-state condition is estimated by 
minimizing Pearson's Z 2 subject to the mean fluctuations available. The optimum 
Pearson function Z* may be interpreted as the wave function of the system and 
in the case of the harmonic oscillator, the free particle in a box, and the hydrogen 
atom, the prediction based on it is compatible with that provided by the solution 
of the corresponding Schr6dinger equations. 

1. INTRODUCTION 

In classical statistical mechanics the evolution of a system of molecules 
was strictly deterministic but a probabilistic model was needed as an approxi- 
mation of reality due to insufficient data available. In quantum mechanics 
the behavior of the system itself is random and the available information 
about the system is only partial from both practical and theoretical points 
of view. In both cases we are facing a similar problem: estimate the most 
reliable probabilistic model subject to the data available. Paraphrasing Niels 
Bohr (Polkinghorne, 1986), "the entire formalism is to be regarded as a 
tool for deriving predictions, of definite or statistical character, as regards 
information obtainable under experimental conditions described in classical 
terms." 

The present model is strictly based on mean values. At the beginning, 
we estimate the most unbiased probabilistic model for the possible values of 
a characteristic X of a quantum system subject to the constraints represented 
by some known mean values. Such a model characterizes the behavior of 
the system in the steady-state condition corresponding to the given mean 
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values. The mean values accessible to us are not sufficient for determining 
the probability distribution on the possible values of the characteristic in 
a unique way. There are in fact infinitely many probability distributions 
compatible with the known mean values. From all these feasible probability 
distributions we select the most unbiased one (i.e., the one containing the 
largest amount of uncertainty or, equivalently, giving no special preference 
to particular possible values). This problem has already been studied in the 
literature and Shannon's entropy, inspired by L. Boltzmann's H-function, 
has been used as an abstract measure of the amount of uncertainty contained 
by a probability distribution. By maximizing entropy subject to the given 
mean values, we select the most unbiased probability distribution u subject 
to the given constraints. We say that such a probability distribution charac- 
terizes the behavior of the characteristic of the quantum system in the steady- 
state condition defined by the mean values taken as constraints. The solution 
of such a variational problem is only a model, an estimation of the true 
unknown probability distribution of the values of the characteristic X of the 
system. But it is chosen to be the most unbiased estimation subject to the 
mean values accessible to us through the measurement process. When not 
only the mean values of some observables are given but also a reference 
measure induced by a certain field, then the above approach for estimating 
the steady state is generalized in the sense that we are looking for the prob- 
ability distribution on the set of possible values of the observables that is 
the closest one to the given reference measure subject to the mean values 
accessible to us, where closeness is measured by the Kullback-Leibler 
divergence. 

Suppose now that random fluctuations alter the initial steady-state con- 
dition, which means that the maximum entropy probability distribution u 
subject to the initial mean values no longer accurately describes the behavior 
of the characteristic of the system we are interested in. We can detect such 
a change in the following way. To the steady-state probability distribution 
u we assign a sequence of orthonormal functions with the weight u. As long 
as the system remains in the steady-state condition described by u, the mean 
value of each orthonormal function is equal to zero. When at least one of 
these mean values is not zero, this means that the system has deviated from 
the steady-state condition described by u. The mean fluctuations just detected 
are not sufficient to completely determine the probability distribution of the 
fluctuations from the steady state described by u. We estimate the probability 
distribution of the possible deviations from the steady-state condition 
described by u by minimizing the <Z 2> global indicator introduced by Karl 
Pearson in statistical inference at the beginning of this century in order to 
measure how different two densities are on average, subject to the mean 
fluctuations estimated. The optimum Pearson function Z* behaves like the 
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wave function of the system, its square is the probability density of the 
deviations from the steady-state condition described by u, and, in the case 
of the harmonic oscillator, the free particle in a box, and the hydrogen atom, 
the prediction based on it is compatible with that provided by the solution 
of the corresponding Schr6dinger equations by simply using classical quanti- 
zation rules. 

Without using the formalism of this paper, Bohm (1984) argued in 
favor of paying attention to random fluctuations in general and at the quan- 
tum level in particular. "It is not relevant where such fluctuations come 
from. All that is important is to assume that they exist and to see their 
effects. . .  Instead of starting from Born's probability distribution P =  I~,l 2 
[where ~, is the wave function of the system] as an absolute and final and 
unexplainable property of matter, we have [to show] how his property could 
come out of random motions originating in a subquantum mechanical level." 
Several papers (Nelson, 1985; Baublitz, 1988) have attempted to derive the 
Schr6dinger equation from classical mechanics and an assumed Markov 
diffusion stochastic process induced by random fluctuations of a submicros- 
copic medium. The present paper does not follow this line of thought, but 
aims at constructing the most unbiased probabilistic model compatible with 
mean fluctuations registered at the macroscopic scale, using tools from sta- 
tistical inference such as Pearson's indicator, Shannon's entropy, and the 
Kullback-Leibler divergence. 

In order to be more specific, let us distinguish three phases in building 
up the probabilistic model: 

Phase I: Let D be the set of possible values of a characteristic X of a 
quantum system. Neither the value of X nor the probability density u on D 
is known. At the macroscopic level, by performing observations on the 
respective quantum system, we can get estimates of some mean values, such 
as the mean components of X and the corresponding variances. These mean 
values accessible to us do not determine, in a unique way, the probability 
distribution u on the set D of possible values of X. From all probability 
densities u on D compatible with the given mean values, we choose that one 
which maximizes Shannon's entropy H(u)=-(In ulu), a generally accepted 
measure of uncertainty contained by a probability distribution, inspired by 
Boltzmann's//-function from statistical mechanics, where ( .  [. ) is the inner 
(scalar) product between square-integrable functions defined on D, 

(ftg)= frf(X)g(x) dx 

Such a probability density is the most random one, i.e., it takes all possible 
states into account in an unbiased way, without giving undue preference 
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toward particular values, subject to the constraints provided by the mean 
values given by the measurement process. The principle of entropy maximi- 
zation (PEM) has been amply discussed in the literature (von Neumann, 
1932; Jaynes, 1957; Levine and Tribus, 1979; Guiasu and Shenitzer, 1985; 
Justice, 1986; Skilling, 1989). When a reference measure of  density v is also 
given, PEM has been generalized by the principle of minimum divergence 
(PMD), according to which we determine the closest probability density u 
to the reference density v subject to the given mean values, where closeness is 
measured by the Kullback-Leibler divergence (Kullback and Leibler, 1951) 
D(u:v)=(ln(u/v)lu). The solution u of PEM (or PMD) describes the 
behavior of X in the steady-state condition defined by the given mean values 
(and the reference measure). 

Phase II: A this stage, we want to check whether or not the system 
remains in the steady-state condition described by the probability density u. 
Let q /=  {U,, n=0 ,  1 , . . . }  be an orthonormal, generally--but not neces- 
sarily--complete sequence of functions on D with the weight u. As long as 
the system remains in the steady-state condition described by u, all the mean 
values (Unlu) (n= 1, 2 . . . .  ) are equal to zero. From a practical point of 
view, we focus on a finite number, say U~ . . . . .  UN, of functions from q/, 
and observing M values of X, say Xl . . . .  , xM~D, we calculate the sample 
mean 

O~ M) = [U.(xl) +" ' " + U,,(xM)I/M 

for each n = 1 . . . . .  N. The number 0~ M~ is used as an estimate of the mean 
value of U.. Due to the central limit theorem from probability theory, we 
are 100(1- a)% confident that the true mean value of U. belongs to the 
confidence interval 

[(J~,~) - Z~,/zS~ff~/v/M, O~ M~ + Z,/2SU~/.,/M] (1) 

for M >  30, where 0 < a < 1, [S~U~] 2 is the sample variance, i.e., 

[S~M~] 2= {[U.(x , ) -  0~M~]2 + - ' '  + [U.(XM)- 0~.M)]2}/(M - 1) 

and Z,~/2 is the critical point of the standard normal distribution N(0, 1) 
corresponding to the probability a/2. For a 95% confidence interval, for 
instance, Zo.o25 = 1.96. Now, if the number 0 belongs to the confidence inter- 
val (1), then we do not reject the hypothesis that the probability density u 
accurately describes the behavior of the characteristic X. If the confidence 
interval does not contain the number 0, then we use the value of ~-~M) as an 
estimate of the new mean value of U.. This is an indication that random 
fluctuations have occurred along the direction U. and the probability density 
u no longer describes accurately the behavior of the characteristic X. In what 
follows, for simplifying the writing, O~ M) will be denoted by c.. 
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Phase III: At this stage, taking the mean values cl . . . .  , cN into 
account, we want to determine the probability distribution of the deviations 
from the steady-state condition described by u due to the random fluctua- 
tions in the directions U ~ , . . . ,  UM. We are looking for the closest density 
f*  to u on D subject to the mean values cj . . . . .  CN, where the closeness 
between a densi tyfand u is measured by the mean relative square deviation 
of f from u, introduced by Pearson (1900), 

(2) 

If we focus on the expression ( ( f - u ) 2 / u [ l ) ,  we can see that the minimi- 
zation of Pearson's indicator is not quite the same thing as the well-known 
(and widely applied since Legendre and Gauss) least square method, even 
if they are obviously connected. As the square deviations are divided by u, 
by minimizing (z2(f: u)) we sanction more drastically the large deviations 
from the less probable states of the steady-state condition described by u. 
From a technical point of view, we take into account only densities f for 
which f l u  is square-integrable with respect to the measure of density u. 
The Pearson function x ( f * :  u) corresponding to the optimum solution f*  
behaves like the wave function of the system, while its square, x2(f*: u) is 
the probability density of the sum of the square fluctuations of types 
U~ . . . .  , UN weighted by the mean fluctuations c l , . . . ,  CN. The wave func- 
tion appears to be generated by the deviations from a steady-state condition 
due to random fluctuations having a mean different from zero. 

The formalism is applied to the harmonic oscillator, the free particle in 
a box, and the hydrogen atom. In all these cases, the minimization of the 
mean Pearson deviation (z2(f:  u)) from the steady-state probability density 
u yields a solution f* for which the corresponding Pearson function Z *= 
2~(f* : u) behaves like the wave function of the system satisfying a second- 
order differential equation that, under standard classical quantization rules, 
reduces to the corresponding Schr6dinger equation. 

A recent paper (Frieden, 1989) has relatively the same aim, namely to 
build up a probabilistic model based on estimation theory from which the 
Schr6dinger equation could be derived as a consequence. The tool used, 
however, is different. Dealing with the position of a particle on the real 
line, that work obtains the Schr6dinger equation by minimizing a linear 
combination of the Fisher information (Fisher, 1947), measuring the degree 
of ruggedness of a probability distribution u, and the mean kinetic energy 
of the particle, namely, using our notations, 

([(In u)']2]u) + ~,( W -  VJu) 
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where W is the (unknown) mean total energy, V(x) is the potential energy, 
and X is a fixed negative constant. Taking u = V 2 and A,= -8zrm/h 2, where 
h is Planck's constant, we find that the necessary Euler-Lagrange equation 
of the above minimization problem gives the Schr6dinger equation 

tlt "(x) + (8tom~h2)[ W -  V(x)] Itt(x ) = 0 

In what follows, Section 2 deals with the simplest case of a random 
variable whose steady-state condition is perturbed by linear fluctuations. 
Section 3 presents the general mathematical model. Section 4 studies three 
special cases of steady-state conditions frequent in applications. Section 5 
shows for what steady-state probability densities and types of fluctuations 
the corresponding wave function satisfies a differential equation of Schr6- 
dinger type. In Sections 6-8, the formalism is applied to the harmonic oscilla- 
tor, the particle in a box, and the hydrogen atom, respectively. In Section 9 
the formalism is applied to the nonstandard problem of determining the 
location of a one-dimensional particle when the only initial information 
available is a mean location value and a reference measure induced by a 
certain field. The final section contains conclusions. 

2. A SIMPLE CASE 

Let X be a random variable representing a characteristic of a physical 
system, D its range, (-[ .  >, the scalar (inner) product with the weight u 
between square-integrable functions defined on D, i.e., 

( f ig> ,  = fof(x)g(x)u(x) dx 

and (-I" ) the scalar product with the weight 1. We denote by 1 both the 
number 1 and the constant function identically equal to 1. If some moments 
of X, say E(xk), k=i(1)  . . . . .  i(m), are given, there are infinitely many 
probability densities fcompatible with them. The steady-state condition of 
X corresponding to the given moments E(xk), k = i(1) . . . . .  i(m), is charac- 
terized by the maximum entropy probability density u compatible with these 
moments. It is the solution of the variational problem 

max H(u)= - ( In  ulu> 
I t  

subject to 

< u l l >  = 1 

<x~lu> = e (x~) ,  k = i(l) . . . . .  i(m) 
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The solution of this variational problem is the most unbiased probability 
density subject to the constraints imposed by the given moments of X. To 
give an example, the maximum entropy probability density u on D= 
( -o% +oo), corresponding to the steady-state condition induced by the 
mean p = E ( X )  and the variance 0 -2= E[(X-/t)2], is the normal distribution 
NOt, 0"2). Also, when D=(0 ,  +oo), the maximum entropy probability 
density corresponding to the steady-state condition induced by the mean 
X=E(X) is the density of the exponential distribution E(2,) with parameter 
X, i.e., 

u(x) = 1 e_X/~ 

Finally, the maximum entropy probability density on D = [a, b] describing 
the steady state of X when no constraint is imposed is the density of the 
uniform distribution U(a, b), i.e., u(x) = 1 f ib  - a). 

Let u be the maximum entropy probability density on D corresponding 
to the steady-state condition induced by some given moments of X. We call 
u the maximum entropy steady-state probability density on D. Let /1 = 
E ( X ) = ( x l u ) ,  0 -a=E[(X- I . t )2]=( (x - l t )21u) ,  and ~ Us}, where 
U0 = 1, U~ = (x-~t)/0-. Obviously, ~'. is an orthonormal set of square-inte- 
grable functions on D with the weight u. The function U~ represents a linear 
fluctuation. In the steady-state condition characterized by u, the mean linear 
fluctuation of type U~ is zero, (Udu)=0 .  Suppose that, due to random 
fluctuations of linear type Uj, the system gets out of the steady-state condi- 
tion characterized by u and the mean linear fluctuation becomes (U~lf )=  
c, where c is a given real constant and f the unknown probability density 
describing the behavior of X for the new condition the system is in. The 
mean Pearson deviation (z2(f :  u)) of f from u is defined by (2). 

Asf i s  unknown, we approximate it by the solution f*  of the variational 
problem mini(z2(f:  u)) subject to 

As a more general variational problem of this type will be solved in the next 
section, we simply give here the solution, which is 
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It is a signed density satisfying (3), together with (f*lu) = 1, and (Z .2) = 
( z2 ( f*  : u ) ) =  c 2. The corresponding wave function is 

Z*(x)=z(f*: u)(x)=(fu~)-l)[u(x)] '/2 

= c U ~ ( x ) [ u ( x ) ]  ~/2 = c x -  ~ [u(x )] , /2  

The normed wave function is ~*(x )=  c-~z*(x)i Its square, 

c-2( f*(x)- 1 u(x)= u(x) ~'*2(x)= \ u ( x )  

may be interpreted, in a natural way, as the probability density of the stand- 
ardized square deviations from the mean, showing the intensity of the devia- 
tion from the steady-state condition. 

3. THE MATHEMATICAL MODEL 

Let X be a random variable representing a characteristic of  a physical 
system, D its range, and u the probability density on D describing the 
behavior of X in a steady-state condition. Suppose u > 0  on D. Let q /=  
{Un, n=0 ,  1 . . . .  ) be an orthonormal sequence of functions on D with the 
weight u, with Uo = 1. Then, (U,,I U,)~ = 6 ..... where 6 ...... = 1, and S .... = 0 if 
m # n. Due to random fluctuations, the system gets out of the initial steady- 
state condition and the behavior of X is no longer described by u. We 
consider only fluctuations given by square-integrable functions. Any such 
fluctuation V may be approximated by finite sums of the form 

(VI Un)Un in the topology induced by the scalar product ( .  1. ) , .  Thus, it 
is sufficient to take into account fluctuations of type U~ . . . . .  [IN. 

Suppose that random fluctuations of type U, . . . .  , UN have occurred 
and let f be the new probability density that describes the behavior of  X. 
The only information available is represented by the mean fluctuations (1). 
These constraints do not determine uniquely the probability density f We 
approximate f by the density f *  that is the closest one to the steady-state 
probability density u subject to the mean fluctuations (1), where closeness 
is measured by the mean Pearson deviation from u given by (2). Thus, we 
are looking for the solution f*  of  the variational problem 

min(x2(f :  u)) (4) 
f 
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subject to the constraints (1). Introducing the Lagrange multipliers a .  and 
the function 

we have 

N 

F= ( f -  u)2/u - Z a.fU. 
n = ]  

N 

(z2(f :  u))- ~ a.(J]U.)=(F[1) 

The inner product is stationary if the Euler-Lagrange equation OF~Of= 0 is 
satisfied. The solution of this equation is 

j'*=u 1+ Z �89 (5) 
L n = |  

Introducing this expression in (1), we get �89 c,, and (5) becomes 

f*=u[l + ~ cnU,~] (6) 
n = l  

The density (6) gives a minimum of (z2(f :  u)). Indeed, for any square- 
integrable function f for which f/u is also square-integrable, if 0g is a com- 
plete system, we have 

U n = 0  u 

which gives 

f=u ~ 

where 

I q (f[U.)U.=u ~ c.U.+ - - f * + u ( W - l )  
n = |  

w=y~* (flG)G 
~t 

the sum being taken for all nonnegative integers nr . . . . .  N}. Thus, as 
( f *  - u[ W) = 0, we have 

(z2(f: u)) = (z2(f*  : u)) + (( W -  1)21 u) _> (x2(f* : u)) 
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The mean Pearson deviation of the solution f*  from the steady-state 
probability density u is 

N 

( Z * 2 ) = ( z 2 ( f  *: u)) = Z c2 
n = l  

The wave function is just the Pearson function 

Z * = z ( f * ' u )  = - 1  =.fu ~. c,U, (7) 
n = ]  

It may be interpreted as being the minimum deviation from the steady- 
state condition described by the probability density u due to the random 
fluctuations of types U t , . . . ,  Uu, with the means cj . . . . .  oN, respectively. 
The normed wave function is 

N \-1/2 

Its square, 

IV . 2  = r Cn U 

n I n I 

may be interpreted as being the probability density on D induced by the 
minimum mean relative square deviations from the steady-state condition 
described by u due to the fluctuations of type U j , . . . ,  UN having the mean 
values cx . . . . .  cN, respectively. 

Let now XI and X2 be two independent random variables describing 
two characteristics of a physical system, Dj and D2 their ranges, uj and u2 
their steady-state probability densities on D1 and D2 respectively, and ~(i)= 
{UC, ~ n=0,  1 , . . .} ,  with U~o ~  1, i=  1, 2, two orthonormal sets of functions 
with the weights u~ and u2, respectively. Then, 

ql=~rr(')U~Z~,m=O, 1, "n=0,  1, .) 

is an orthonormal set of functions with the weight uju2. If, due to random 
fluctuations, X~ and )(2 become dependent, then their behavior is no longer 
described by the independent product density u~u2, but by a joint probability 
density f. Suppose that we know the generalized correlations between Xj 
and )(2 induced by fluctuations of type U~],~UC~ ) (m= 1 . . . . .  M ; n =  
1 . . . . .  N ) ,  i .e. ,  

( r r ( 1 ) l l l ( 2 ) \  - - ~  , , t~,,,lu,, i f- ,+ ...... m = l  . . . . .  M ; n = l , . .  N (9) 

These generalized correlations between X~ and X2 do not determine uniquely 
the joint probability density f We approximate f by the density f*  that is 
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the closest one to the independent product probability density u~u2, subject 
to the constraints (9). Thus, we solve the variational problem 

min z2(f: ulu2) 
f 

subject to the constraints (9). The solution f*  of this problem is the most 
independent product density subject to the given generalized correlations 
(9). This is a kind of principle of maximum independence with constraints. 
By applying it, we want to approximate the joint probability density by 
supposing nothing more about the dependence between Xj and X2 than that 
it is contained in the given generalized correlations (9). The solution is 
similar to that discussed in the one-dimensional case above, namely, 

f*=u,u2 1+ 2 '-,,."',. '-'. J 
m=l n=l 

We have ( f * l l ) =  1, ( f * l l ) ~  u2, and ( f*l l ) (2)=u, ,  where ( .  I" )(0 is the 
inner product in D;,~i= 1, 2. The deviation from independence is 

M N 
(a*=f*-u'u2=u'u= E E v,,,,,,- tamt'(')''(2)V,, 

m=l n=] 

The wave function is the minimum deviation from independence, i.e., 

f ~  
z * = z ( f * :  UlU2)~(UlU2)I/2(~IU ~ -  1) 

The normed wave function is 

r T ( I ) r T ( 2 ) I  ^ , bm,n I J  m t..I n J ,2~ / n 1 

and ~,2 may be interpreted as the probability density of the minimum 
deviations from independence. 

4. SPECIAL CASES OF STEADY-STATE CONDITIONS 

Four types of steady-state conditions prove to be important for the 
topic of this paper: 

(a) If the range is D = ( - m ,  +~) ,  then the maximum entropy condi- 
tion defined by a known mean value p and variance o .2 is described by the 
normal distribution N(p, o.2), having the density 

u(x) = [o.(Dr)'/2] -t e -c~-*')2/(2~2), -oo < x <  +oo 
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which maximizes the entropy 

;? H(u) = - u(x) In u(x) dx 

subject to the constraints p and 0.2. In such a case, 

U.(x) = (2"n!)-'/2H,,[(x- p)/(o'x/~)], n = 0, 1 . . . .  

where H.(x) is the Hermite polynomial (Abramowitz and Stegun, 1972) of 
degree n. 

(b) If the range is D = (0, +oo), then the maximum entropy condition 
corresponding to the given mean value p is characterized by the exponential 
distribution E(p) having the density u(x)=(1/p)e -x/u, x>0.  In such a 
case, U.(x)= L.(x/p), n = 0, 1 . . . . .  where L.(x) is the Laguerre polynomial 
(Abramowitz and Stegun, 1972) of degree n. 

(c) If the range is D=[a ,  b] and no constraint is imposed, then the 
maximization of the entropy H(u) is achieved by the uniform distribution 
u= U([a, b]), with the density u(x)= 1~(b-a), a<x<_b. In such a case, 

( 2 x - a + b l  n=0,1  . . . .  U.(x)=(2n+ 1)I/2P. b-a  b -a / '  

where P.(x) is the Legendre (spherical) polynomial (Abramowitz and 
Stegun, 1972) of degree n. 

(d) In general, the logarithmic deviation (Kullback and Leibler, 1951 ; 
Guiasu, 1977, 1987) of the probability density u from the reference measure 
with the density q > 0 is 

D(u:q)=( ln~u)  

If the reference measure is uniform (i.e., q= 1), then 

D(u: q)= D(u: 1)= (In ulu)=-H(u) 

where H(u) is the entropy of u. In such a case, min, D(u: q) is equivalent to 
max, H(u). In cases (a)-(c] mentioned above, the reference measure was 
supposed to be uniform and the maximum entropy probability density u was 
the closest probability density to the uniform (i.e., Lebesgue) measure subject 
to the respective constraints given by mean values. If the reference measure 
is not uniform with respect to the Lebesgue measure and has the density q, 
then the steady-state probability density u is obtained by minimizing D(u: q) 
subject to the given mean values of X. 
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If  the range is D=(0 ,  + ~ ) ,  the constraint is the mean /z, and the 
reference measure has the density q ( x ) =  x ~ (a > -  1), then 

u(x )=f l - ( '~+l ) [F(a+ l)]-Ix~'e -x/~, x > 0  

where/3 = p / ( a  + 1), minimizes D(u: q). This is just the density of the gamma 
distribution with parameters a + 1 and/3,  and we write u = F(a  + 1,/3). In 
this case 

1)'~ ~ [ x'~ u , , ( x ) = ( n ! f l r ( a  + ,/2 
. : 0 , ,  . . . .  

where L~(x)  is the generalized Laguerre polynomial (Abramowitz and 
Stegun, 1972) of degree n - a  and order a. 

(e) Of course, there are several orthonormal sets of functions 0# with 
the same weight u. Thus, i f  D = [0, a] and no constraint is given, the maxi- 
mum entropy probability distribution is the uniform one U(0, a), with the 
density u ( x ) = l / a ,  O<x<<_a. Then, both U, , ( x )= , , f i cos (mrx /a )  (n= 
0, 1 . . . .  ) and U,,(x) = ~ sin(nrcx/a) (n = 1, 2 . . . .  ), and 

U, , ( x )=(2n+ 1 ) ' / 2 P , ( ~ x - l ) ,  n = O , l  . . . .  

are complete orthonormal sets of functions with the weight u. 

5. THE WAVE EQUATION 

A simple calculation based on (7) and (8) shows that the wave function 
~'* satisfies an equation of Schr6dinger type 

( ~ * ) " -  (27r / h )2K~  * = 0 (10) 

if 

~ 5/~, ,,, ~ uu' u "  + [�89 - �88 ~ - (27r/h)~Kd/2] U. = 0 1.1 n | 

If q /=  { U., n = 0, 1 . . . .  } is an orthonormal set of polynomials with the 
weight u, then U. satisfies a second-order differential equation (Abramowitz 
and Stegun, 1972), 

g2(x) U"(x)  + g , (x )  U ' (x )  +go(x)  U.(x) = 0 

Thus, ~* satisfies the Schr6dinger equation if 

1 . 1 ," r \2  g2 = u s/2, gl = uu', go = ~ uu - Ztu ) - (2zr/h)2Ku 5/2 

This is just what happens in the examples from the next two sections. 



1166 Guiasu 

Let also notice that substituting ~'*= exp(2rrS/h) in (10), where S has 
the dimensions of an action, we get 

(h/2rc)S" + (S')2 _ K= 0 

which at the macroscopic level (i.e., taking h ~ O) becomes the Hamilton- 
Jacobi equation 

(S ' ) 2 -K=O 

6. THE HARMONIC OSCILLATOR 

Let X be the displacement of a one-dimensional harmonic oscillator. It 
is a random variable with the range D=(-oo ,  +oo). Let/z and o -2 be the 
mean and variance of X. In the steady-state condition corresponding to the 
mean /z and variance ~2, according to the special case (a) from Section 
4, the maximum entropy probability distribution is u=N(p ,  o-2) and the 
corresponding orthonormal system with the weight u is 

U,(x)=(2"n!)-'/ZH,[(x-p)/(o-.,/~)], n=O, 1 , . . .  

where H, is the Hermite polynomial of degree n. As long as the harmonic 
oscillator is in a steady-state condition described by u, the mean fluctuations 
are (U,  lu)= 0, n = 1, 2 , . . . .  If random fluctuations of types U j , . . . ,  UN 
occur and the mean fluctuations are e l , . . . ,  cN, then the steady-state prob- 
ability density u is replaced by the probability density f such that (U,I f ) =  
c,, n = 1 , . . . ,  N. According to (6), its approximation given by the minimum 
Pearson deviation from the steady-state condition u is 

n = |  

According to (7) and (8), the corresponding normed wave function is 

V*(x) = c 2} (2fro-2) -~/" e-(X-u)'/(4a2) 
I 

N 

• 2 c,(2"nt)-1/2H,[(x-I't)/(o-x/~)] 
n = l  

In particular, if U, is the only type of fluctuation, then the normed 
Pearson function is 

I / t*(X)  = ( 2 n o - 2 )  -1 /4  e-(X-u)2/("~)(2"n!)-'/2H,[(x-/~)/(o'x/~)] 
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It is well known (Abramowitz and Stegun, 1972) that the function 
e-X2/2H.(x) satisfies the differential equation 

[e-":V2H.(x)]" + (2n + 1 - x 2) e-"~V2H,,(x) = 0 

from which we get that the wave function g~* given above is the solution of  
the equation 

[ g*(x)]" + 0--2[(n + }) - (x - p)2/(4o-2)] ~'* (x) = 0 

In particular, if the mean/a =0,  we get the equation 

[ ~*(x)]" + 0--2[(n + �89 - x2/(40-2)] ~*(x) = 0 (11) 

Notice that up to this point neither the Schr6dinger equation nor any 
quantization rules have been used. The Schr6dinger equation for the one- 
dimensional harmonic oscillator in state n is (Pauling and Wilson, 1935; 
McQuarrie, 1983) 

[ g.*(x)]" + (8tr20/hZ)[E. - ~kx 2] ~,* (x) = 0 (12) 

where k is the force constant between two masses m~ and m2, O=mlm2/  
(ml +m2) is the reduced mass, E. is the energy, and h is Planck's constant. 
Equation (11) becomes the Schr6dinger equation (12), assuming the 
quantization rules 

4Jr(Ok) u2, " 2rr \O/  \ 2/  

The second quantization rule is the standard way of  defining the energy 
of  the harmonic oscillator as a function of h, k, 0, and n. The first quantiza- 
tion rule throws a new light on the correspondence principle: if the force k 
is very strong or /and the masses m~, m2 are very big, then the variance 0-2 
is negligible and nothing is random in the displacement of  the harmonic 
oscillator; on the other hand, if Planck's constant h is neglected (as at 
the macroscopic level), then the variance 0 -2 is again negligible and the 
displacement is given by the mean value/z. 

7. A FREE PARTICLE IN A ONE-DIMENSIONAL BOX 10, al 

Let X be the location of  a particle in the box [0, a]. X is a random 
variable with the range D = [0, a]. As the particle is supposed to be free, 
there are no constraints imposed on X except the range itself. Therefore, 
according to the special case (c) from Section 4, the steady-state condition 
is characterized by the uniform distribution U(0, a) having the probability 
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density u(x)= l/a, O<x<a, and an orthonormal system with the weight u 
is 

Uo(x) = 1, U.(x) = x/~ sin nrcx - - ,  n=_,_, l  2 . . .  
a 

In the steady-state condition described by u, the mean fluctuations are 
(U,,lu) = 0, n = 1, 2 . . . . .  If  random fluctuations of  types U~ . . . .  , U~ occur 
and the mean fluctuations are cl . . . .  ,cre, then the steady-state probability 
density u is replaced by the probability density f such that 

(x/~sinn~X f l=c~,  n = l  . . . . .  N 

Then, with the notations from Section 3, f is approximated by 

f*(x) = 1 +v/2 ~ c. sin , O<x<a 
n = l  

and the corresponding normed wave function is 

V*(x) = c ~ c,, sin - -  
m = I n = I a 

If  only c . # 0 ,  which means that the random fluctuation have occurred 
only in the direction U., then 

f*(x)=l(l+vC2c"sinn~ 

and the normed Pearson function is 

V* = ( 2 / a )  j/2 sin mr x 
a 

which satisfies the wave equation 

[V*(x)]"+(n2~r2/aE)v*(x)=O, O<x<a (13) 

Notice that up to this point neither the Schr6dinger equation nor any 
quantization rules have been used. The Schr6dinger equation for a free 
particle of  mass m in the box [0, a] is (Pauling and Wilson, 1935; McQuarrie, 
1983) 

[V*(X)]"+(8~r2mEn/h2)v*(x)=O, O<_x<_a (14) 
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where E. is the energy of  the particle in state n and h is Planck's constant. 
Equation (13) becomes the Schr6dinger equation (14) with the standard 
quantization rule E.=h2n2/(8ma2). 

As in any undulatory phenomenon, the presence of the particle in the 
box is detected by the probability density ~.2 of  the deviations from the 
steady-state condition due to random fluctuations of  type x/2 sin(mrx/a). 

8. THE H Y D R O G E N  ATOM 

The hydrogen atom describes the interaction between two point par- 
ticles (the proton and the electron) due to the Coulomb attraction of  their 
electrical charges. Using the spherical polar coordinates (R, | qb), where R 
is the distance between the electron and the proton fixed at the origin, we 
obtain that for the Cartesian coordinates 

x = r sin 0 cos ~b, y = r sin 0 sin ~b, z = r cos 0 

the Jacobian of  the transformation is r 2 sin 0, where the ranges of  R, | and 
are 0 < r <  o% 0 < 0 < Jr, and 0_< ~b < 2Jr, respectively. The whole interaction 

is a radial one. Consequently, there are no restrictions imposed on 19 and 
~.  As the range of  �9 is [0, 2n] and there are no constraints on ~,  its steady- 
state probability density is uniform, U(0, 2rr), i.e., 

u(3)(~b ) = 1/(2t0,  0 < ~b_<2tr (15) 

The standard set a/g of  orthonormal functions with the weight u (3) is the 
trigonometric system: 

Uto3)(~b) = 1, U}3)(~b) = f ~x/~ cos(m~b) (m = 1 , 2 , . . . )  (16) 
�9 d~ sin(m~b) 

The range of  | is [0, re]. Let us introduce the random variable V= 
cos ill. Its range is [ -1 ,  1]. Having no constraints on | the steady-state 
probability distribution of  V is the uniform distribution on [ -1 ,  1] [see the 
special case (c) in Section 4]. The Jacobian of  this transformation is sin 0. 
Therefore, the steady-state probability density is 

1 ~(2)(v)- ~, - 1  < v <  1 

and as system ~ of  normed functions with the weight t7 (2) we can take 
(Abramowitz and Stegun, 1972) either the sequence of  normed Legendre 
polynomials {(21+ 1)l/2pl(v), I = 0 ,  l . . . .  } or, more generally, the normed 
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associated Legendre polynomials 

(2l+_l)(l- t)l)i/2p,(o), 
(l+t)! 

1=0, 1 , . . . ,  O<t<l 

Returning to the range [0, it] of| we obtain for the steady-state probability 
density 

U(2)(O) =t~(2)(COS O) sin O=~-sin O, O<O<Tr (17) 

and the corresponding orthonormal system q/with the weight u(2)(O) is 

(21+ 1)( /-  t)!] 1/2 
vlY(~ OT .v / e (cos 0), l = 0 , 1 , . . . ,  O<t<l (18) 

The orthogonality of the sequence (18) is with respect to the subscript I. 
The range of R is [0, oo) and let/,l be the mean value of R estimated at 

the macroscopic scale. In describing the random variable R we are looking 
for the most random probability distribution on [0, oo) subject to the mean 
value/x. The reference measure on [0, oo) has as density the r-component 
of the Jacobian mentioned above, i.e., r 2. Therefore, we are looking for the 
closest probability density u<l)(r) to r 2 on [0, oo) subject to the mean value 
/i, where closeness is measured by the Kullback-Leibler divergence from 
statistical inference. Taking a = 2 in the result mentioned in paragraph (d) 
of Section 4, we find that the solution of this variational problem is the 
gamma distribution F(3,/x/3), with parameters 3 and /x/3, having the 
density 

u~ =f13 r 2 e -O", r>_O (19) 
2 

with f l=3/y .  The variance is O'2=I12/3. As a set q / o f  normed functions 
with the weight u ~ we can take either 

1/2 
. , . o .  U(oi)(r) = 1, U ~ l ) ( r l = t ~  ) Lktpr), k = 1, 2 . . . .  

or the richer set 

UO)tr,_{ 2fls-i(k-s)!  '~'12r(~_ U'o',o)(r)=l, (2o) 
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with s = 1 , . . . ,  k; k = 1, 2 . . . .  ; where the associate Laguerre polynomial of 
degree k - s  and order s is 

-d {xd  ) 
L~(x)--~x~ ke -~xk (X ~ e-") 

The orthogonality of the sequence (20) is with respect to the subscript k. 
As the random variables R, O, and �9 are independent, the joint steady- 

state probability density is, according to what was discussed in the last part 
of Section 3, u(r, O, e~)= u(~ ). In order to allow a subsequent 
dependence between the systems of orthogonal functions (16), (18), and 
(20) we can assume any relationship s =  i(l, m), t=j(k, m), where i a n d j  are 
arbitrary nonnegative integer-valued functions. As long as the system is in 
a steady-state condition characterized by the density u, the mean fluctu- 

(1) (2) (3) ation of type Uk.s(r)UI., (0)U,,, (~b) is equal to zero. If due to random fluctu- 
ations of this type, the system gets out of the steady state characterized 
by u, then the new probability density f for which some covariances 

(J) (2) (3) (Uk.~(r)Ul,, (0)Urn (~b)]f)=Ck/,,, are known to be different from zero may 
be approximated by (see Section 3) 

(I) (21 (3) ] f*(r, O, qS)=u(r, O, O) 1 + Z Ck,,,,Uk.~(r)Ul,, (0)U,, (t~) 
k , l , m  

If Ckh, is the only correlation known to be different from zero, then 

f*(r, O, c~)=u(r, 0, ~b)[1 (1) �9 (2) (3) + Ck~,,,Uk,s(, )U1., ( O)U,. (40] 

and the corresponding normed wave function is 
, I/2 (I) (2) (3) Vlkl,,,(r, O, ~b)=[u(r, O, ~b)] Ck,,(r)Vt., (O)U,,, (~b) 

As s=i(l,m) and t=j(k,m), if mr then (~t~1,,,lg~,r,,,.)=O due to the 
T]'(3) orthogonality of the functions v,~ with respect to m. If m=m' and l # l ,  

then * * - (~k~,,I~tk'r,,)--0 due to the orthogonality of the functions rr(2) with t . l  l, t 

respect to l. Finally, i f m = m ,  l=l', but k#k' ,  then * * ' (~kt,,,]~k'tm) = 0 due to 
the orthogonality of the functions U(kJ2 with respect to k. 

.z 
Now, p'k~,,(r, 0, ~b) may be interpreted as being the probability density 

induced by the minimum mean relative square deviation from the steady- 
state condition due to random fluctuations of type Uk.~O)UI,,(O. (2)(O)Um(3)(~b) 
with known mean. The larger the deviation from the steady-state condition 
in a subdomain, the larger is the probability of having the electron located 
in that subdomain. 

Up to this point neither the Schr6dinger equation nor any quantization 
rules have been used. The classical results are obtained if we assume that 
the mean value/2 is equal to/2 =3nao, or, equivalently, if the most probable 
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radial value [i.e., the value of r for which the steady-state probability density 
(19) is maximum] is r,,? = nao, where n is the total (or principal) quantum 
number and a0 is the Bohr radius or the distance of the electron from the 
nucleus in the first (circular) orbit. In such a case fl = 2 / r , , p =  3/11 = 2 / n a o  
and, as a common practice, k and s in (20) are replaced by n + l  and 2l+ 1, 
respectively, while t from (18) and m from (16) are replaced by Iml. In such 
a case, I is the azimuthal (or angular momentum) quantum number, m is 
the magnetic quantum number, and the possible values of the quantum 
numbers are n = 1, 2 . . . .  ; I=0,  1 . . . . .  n -  1 ; m = 0 ,  4-1 . . . . .  4-I. Therefore, 
the whole quantum mechanics formalism for the hydrogen atom is obtained 
from minimizing the mean Z 2 deviation from the steady-state condition of  
maximum uncertainty subject to the only quantization rule according to 
which the most probable radial value of the electron orbit corresponding to 
the principal quantum number n is nao, where a0 is the Bohr radius or the 
minimum distance of the electron from the nucleus in the old quantum 
mechanics. 

9. A NONSTANDARD EXAMPLE 

The cases analyzed above are standard. Let us give the nonstandard 
example of determining the location X of a particle on [1, or) knowing only 
the mean location/.t = 1.7137, estimated at the macroscopic scale, when the 
reference measure on [1, ~ )  has the density x -2, which means that due to 
an existing field on [1, ~ )  we expect the probability distribution of X to be 
similar to x -2. Following the same steps explained in Section 3, the steady- 
state probability density u of X is obtained by minimizing the Kuliback- 
Leibler divergence from the reference measure with density x -2 subject to 
the mean/z = 1.7137. Using the Lagrange multiplier technique, we get 

u(x )  = [E2(f l )]-~x -2 e -~x, x>_ 1 

where 

E . ( z )  = t-"  e -~' dt, n=0 ,  1 . . . .  ; z > 0  

is the exponential integral and fl the solution of the exponential equation 
# = E j ( f l ) / E 2 ( f l ) ,  which for /~= 1.7137 gives fl=0.5.  From tables for the 
exponential integral (Abramowitz and Stegun, 1972), E1(0.5)=0.5597736 
and E2(0.5)=0.3266439. Thus, 

u ( x )  = 3.061437853x -2 e -x/2, x >  1 (21) 
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The Gram-Schmidt orthogonalization technique may be applied for 
getting the sequence of  orthonormal polynomials with the weight (21). The 
first ones are (see Figure 1): 

Uo(x) = 1, Ul(x) = 1.1346x- 1.9443 

U2(x) = 0.4421 x 2 - 2.7184x + 3.0166 

U~(x) = 0.0994x 3 - 1.4097x 2 + 4.933 I x -  4.3259 

As long as the system remains in the steady state described by u, the 
mean values (U~lu) (n >_ 1) are equal to zero. If  random fluctuations occur 
along the "direction" U2, for instance, the mean value c2 = (U21u), estimated 
at the macroscopic scale by the sample mean 

N 

N-'E U2(x,) 
/ = 1  

where N is the sample size, is no longer equal to zero. The normed wave 
function of the system corresponding to the random fluctuation of type U2 
is ~b2(x)= [u(x)]~/2U2(x) and the probability density of the deviations from 
the steady-state condition due to the random fluctuations of type U2 is 
O2~(x). The larger the deviation from the steady-state condition in an arbi- 
trary subinterval of [1, ~ ) ,  the larger is the probability of having the particle 
located in that subinterval. The graphs of  u (marked with stars), 
tkl =x/u Ui (marked with squares), and ~b 2 (marked with triangles) are 

Fig. 1. The first three orthogonal  polynomials. 
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Fig. 2. The graphs of u, ~bl, and q~. 

shown in Figure 2. The similar graphs of u, ~b2 = , ,~  U2, and ~b~ are given in 
Figure 3. 

10. CONCLUSION 

It is almost unanimously agreed that the solution of the Schr6dinger 
equation, considered as a fundamental postulate of quantum mechanics, is 
a probability wave. This wave function describes a physical system in the 
sense that it gives information concerning the probabilities of the results of 
various observations which can be made on the system. In this paper the 
probability wave function is not deduced from the Schr6dinger equation, 
but from a variational problem involving the minimization of the mean 
relative square deviation used by Pearson in statistical inference at the begin- 
ning of this century. Instead of starting from the Schr6dinger equation and 
eventually interpreting the square of the module of its solution as being a 
probability density, an interpretation Schr6dinger himself never fully agreed 
with (Mehra and Rechenberg, 1987), we estimate the most unbiased prob- 
ability density subject to the mean values and mean fluctuations accessible 
to us through the measurement process and eventually get the Schr6dinger 
equation as a consequence. A system in a steady-state condition is described 
by a probability density u depending only on a set of mean values determined 
by the measurement process. Such a probability density is usually determined 
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Fig. 3. The graphs of u, ~b2, and ~b~, 

by applying the principle of maximum entropy or, more generally, the prin- 
ciple of minimum divergence from a reference measure, subject to the known 
mean values that characterize the respective steady-state condition. We 
attach to u a finite or countable set ~ =  {U~, n=O, 1 . . . .  ) of orthonormal 
functions with the weight u, where U0 = 1. As long as the system remains in 
the steady-state condition described by u, the mean fluctuations of type U~ 
(n= 1, 2 . . . .  ) are all equal to zero, i.e., (U,  lu )=0  (n= 1, 2 . . . .  ). Suppose 
that due to random fluctuations the system gets out of the steady-state 
condition and the previous probability density u has to be replaced by a new 
probability density fcompatible with the new mean fluctuations (U,  If)= 
c,:~0 (n= 1 . . . . .  N) obtained at the macroscopic scale. We approximate f 
by the solution f*  of the variational problem min(z2(f:  u)) subject to the 
mean fluctuations (U,,lf)=c,, (n= 1 . . . . .  N), where (zz( f :  u)) is the Pear- 
son mean relative square deviation o f f  from u defined by (2). The wave 
function ~,* of the system is just the normed optimum Pearson function 
z ( f * :  u), and its square ~,,z is naturally interpreted as the probability 
density of minimum mean relative square deviation from the steady-state 
condition described by u, due to random fluctuations of type U,, n= 
1, 2 , . . . .  The formalism is applied to the harmonic oscillator, the free parti- 
cle in a one-dimensional box, and the hydrogen atom. The standard results 
are obtained from the above formalism by using only classical quantization 
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rules. The quant izat ion rules seem to be the bridge between the unbiased 
probabilist ic model  built up  and some physical characteristics (energy, for  
instance) o f  the quan tum system involved. 
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